Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Adaptive Machine Unlearning
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Adaptive Machine Unlearning
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Adaptive Machine Unlearning

            6. prosince 2021

            Řečníci

            VG

            Varun Gupta

            Sprecher:in · 0 Follower:innen

            CJ

            Christopher Jung

            Sprecher:in · 0 Follower:innen

            SN

            Seth Neel

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Data deletion algorithms aim to remove the influence of deleted data points from trained models at a cheaper computational cost than fully retraining those models. However, for sequences of deletions, most prior work in the non-convex setting gives valid guarantees only for sequences that are chosen independently of the models that are published. If people choose to delete their data as a function of the published models (because they don't like what the models reveal about them, for example), t…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            These Places Do Not Exist: Machine-Imagined Census Tracts
            31:28

            These Places Do Not Exist: Machine-Imagined Census Tracts

            Nicholas Carolan

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Relational Pattern Benchmarking on the Knowledge Graph Link Prediction Task
            04:35

            Relational Pattern Benchmarking on the Knowledge Graph Link Prediction Task

            Afshin Sadeghi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Optimal Gradient-based Algorithms for Non-concave Bandit Optimization
            10:53

            Optimal Gradient-based Algorithms for Non-concave Bandit Optimization

            Qi Lei, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adapting to function difficulty and growth conditions in private optimization
            11:30

            Adapting to function difficulty and growth conditions in private optimization

            Hilal Asi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            eXplainable AI approaches for debugging and diagnosis
            09:50

            eXplainable AI approaches for debugging and diagnosis

            Roberto Capobianco

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            How Well do Feature Visualizations Support Causal Understanding of CNN Activations?
            11:49

            How Well do Feature Visualizations Support Causal Understanding of CNN Activations?

            Roland S. Zimmermann, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021