Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional Pixel Synthesis
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional Pixel Synthesis
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional Pixel Synthesis

            Dez 6, 2021

            Sprecher:innen

            YH

            Yutong He

            Řečník · 0 sledujících

            DW

            Dingjie Wang

            Řečník · 0 sledujících

            NL

            Nicholas Lai

            Řečník · 0 sledujících

            Über

            High-resolution satellite imagery has proven useful for a broad range of tasks, including measurement of global human population, local economic livelihoods, and biodiversity, among many others. Unfortunately, high-resolution imagery is both infrequently collected and expensive to purchase, making it hard to efficiently and effectively scale these downstream tasks over both time and space. We propose a new conditional pixel synthesis model that uses abundant, low-cost, low-resolution imagery to…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Kategorien

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Revisiting Hilbert-Schmidt Information Bottleneck for Adversarial Robustness
            13:49

            Revisiting Hilbert-Schmidt Information Bottleneck for Adversarial Robustness

            Zifeng Wang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Efficient Unknown Object Detection with Discrepancy Networks for Semantic Segmentation
            03:04

            Efficient Unknown Object Detection with Discrepancy Networks for Semantic Segmentation

            Ryo Kamoi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Understanding Adaptive, Multiscale Temporal Integration In Deep Speech Recognition Systems
            10:28

            Understanding Adaptive, Multiscale Temporal Integration In Deep Speech Recognition Systems

            Menoua Keshishian, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Differential Inference: A Criminally Underused Tool
            1:00:26

            Differential Inference: A Criminally Underused Tool

            Alexander Rush

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            On the Rate of Convergence of Regularized Learning in Games: From Bandits and Uncertainty to Optimism and Beyond
            08:22

            On the Rate of Convergence of Regularized Learning in Games: From Bandits and Uncertainty to Optimism and Beyond

            Angeliki Giannou, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Offline Reinforcement Learning as One Big Sequence Modeling Problem
            09:48

            Offline Reinforcement Learning as One Big Sequence Modeling Problem

            Michael Janner, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen