6. prosince 2021
Řečník · 0 sledujících
Řečník · 0 sledujících
We give relative error coresets for training linear classifiers with a broad class of loss functions, including the logistic loss and hinge loss. Our construction achieves (1±ϵ) relative error with Õ(d ·μ_y(X)^2/ϵ^2) points, where μ_y(X) is a natural complexity measure of the data matrix X ∈ℝ^n × d and label vector y ∈{-1,1}^n, introduced by Munteanu et al. 2018. Our result is based on subsampling data points with probabilities proportional to their ℓ_1 Lewis weights. It significantly improves on existing theoretical bounds and performs well in practice, outperforming uniform subsampling along with other importance sampling methods. Our sampling distribution does not depend on the labels, so can be used for active learning. It also does not depend on the specific loss function, so a single coreset can be used in multiple training scenarios.We give relative error coresets for training linear classifiers with a broad class of loss functions, including the logistic loss and hinge loss. Our construction achieves (1±ϵ) relative error with Õ(d ·μ_y(X)^2/ϵ^2) points, where μ_y(X) is a natural complexity measure of the data matrix X ∈ℝ^n × d and label vector y ∈{-1,1}^n, introduced by Munteanu et al. 2018. Our result is based on subsampling data points with probabilities proportional to their ℓ_1 Lewis weights. It significantly improves o…
Účet · 1,9k sledujících
Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Zihang Jiang, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Gil Shomron, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Yan Luo, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %