Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: “Deep Bandits Show-Off”: Simple and Efficient Exploration with Deep Networks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            “Deep Bandits Show-Off”: Simple and Efficient Exploration with Deep Networks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            “Deep Bandits Show-Off”: Simple and Efficient Exploration with Deep Networks

            Dez 6, 2021

            Sprecher:innen

            RZ

            Rong Zhu

            Sprecher:in · 0 Follower:innen

            MR

            Mattia Rigotti

            Sprecher:in · 0 Follower:innen

            Über

            Designing efficient exploration is central to Reinforcement Learning due to the fundamental problem posed by the exploration-exploitation dilemma. Bayesian exploration strategies like Thompson Sampling resolve this trade-off in a principled way by modeling and updating the distribution of the parameters of the the action-value function, the outcome model of the environment.However, this technique becomes infeasible for complex environments due to the computational intractability of maintaining p…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation
            08:46

            Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation

            Lei Ke, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Object Representations Guided By Optical Flow
            03:07

            Object Representations Guided By Optical Flow

            Jianing Qian, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Models for Actionable Recourse
            11:42

            Learning Models for Actionable Recourse

            Alexis Ross, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Neural Circuit Synthesis from Specification Patterns
            14:12

            Neural Circuit Synthesis from Specification Patterns

            Frederik Schmitt, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Imitating Deep Learning Dynamics via  Locally Elastic Stochastic Differential Equations
            13:45

            Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

            Jiayao Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Unbalanced Optimal Transport through Non-negative Penalized Linear Regression
            11:52

            Unbalanced Optimal Transport through Non-negative Penalized Linear Regression

            Laetitia Chapel, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen