Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Speedy Performance Estimation for Neural Architecture Search
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Speedy Performance Estimation for Neural Architecture Search
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Speedy Performance Estimation for Neural Architecture Search

            Dez 6, 2021

            Sprecher:innen

            BR

            Binxin Ru

            Sprecher:in · 0 Follower:innen

            CL

            Clare Lyle

            Sprecher:in · 0 Follower:innen

            LS

            Lisa Schut

            Sprecher:in · 0 Follower:innen

            Über

            Reliable yet efficient evaluation of generalisation performance of a proposed architecture is crucial to the success of neural architecture search (NAS). Traditional approaches face a variety of limitations: training each architecture to completion is prohibitively expensive, early stopped validation accuracy may correlate poorly with fully trained performance, and model-based estimators require large training sets. We instead propose to estimate the final test performance based on a simple meas…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Dense Unsupervised Learning for Video Segmentation
            13:34

            Dense Unsupervised Learning for Video Segmentation

            Nikita Araslanov, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Twice regularized MDPs and the equivalence between robustness and regularization
            14:19

            Twice regularized MDPs and the equivalence between robustness and regularization

            Esther Derman, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Numerical Reasoning over Legal Contracts via Relational Database
            13:34

            Numerical Reasoning over Legal Contracts via Relational Database

            Jiani Huang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improved Learning Rates of a Functional Lasso-type SVM with Sparse Multi-Kernel Representation
            12:23

            Improved Learning Rates of a Functional Lasso-type SVM with Sparse Multi-Kernel Representation

            Shaogao Lv, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            OGB-LSC: A Large-Scale Challenge for ML on Graphs
            05:17

            OGB-LSC: A Large-Scale Challenge for ML on Graphs

            Weihua Hu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Data driven semi-supervised learning
            12:57

            Data driven semi-supervised learning

            Nina Balcan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen