Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Relative Flatness and Generalization
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Relative Flatness and Generalization
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Relative Flatness and Generalization

            6. prosince 2021

            Řečníci

            HP

            Henning Petzka

            Sprecher:in · 0 Follower:innen

            MK

            Michael Kamp

            Sprecher:in · 0 Follower:innen

            LA

            Linara Adilova

            Sprecher:in · 1 Follower:in

            O prezentaci

            Flatness of the loss curve is conjectured to be connected to the generalization ability of machine learning models, in particular neural networks. Indeed, it has been empirically observed that flatness measures consistently correlate strongly with generalization. However, it is an open theoretical problem why and under which circumstances flatness is connected to generalization, in particular in light of reparameterizations that change certain flatness measures but leave generalization unchanged…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Highly Efficient Representation and Active Learning Framework and Its Application to Imbalanced Medical Image Classification
            02:09

            Highly Efficient Representation and Active Learning Framework and Its Application to Imbalanced Medical Image Classification

            Heng Hao, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Medical Imaging meets NeurIPS
            9:35:06

            Medical Imaging meets NeurIPS

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            AI workloads inside databases
            1:17:20

            AI workloads inside databases

            Guy Van den Broeck, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Introduction: Andreas Holzinger - Invited speakr
            01:29

            Introduction: Andreas Holzinger - Invited speakr

            Andreas Holzinger

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            SoK: Efficient Privacy-preserving Clustering (Extended Abstract)
            13:48

            SoK: Efficient Privacy-preserving Clustering (Extended Abstract)

            Aditya Hegde, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021