Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

            Dez 6, 2021

            Sprecher:innen

            TK

            Trent Kyono

            Sprecher:in · 0 Follower:innen

            BVB

            Boris Van Breugel

            Sprecher:in · 0 Follower:innen

            JB

            Jeroen Berrevoets

            Sprecher:in · 0 Follower:innen

            Über

            Machine learning models have been criticized for reflecting unfair biases in the training data. Instead of solving for this by introducing fair learning algorithms directly, we focus on generating fair synthetic data, such that any downstream learner is fair. Generating fair synthetic data from unfair data - while remaining truthful to the underlying data-generating process (DGP) - is non-trivial. In this paper, we introduce DECAF: a GAN-based fair synthetic data generator for tabular data. With…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
            04:59

            Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance

            Steven Tsan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Antipodes of Label Differential Privacy: PATE and ALIBI
            14:17

            Antipodes of Label Differential Privacy: PATE and ALIBI

            Mani Malek, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The marriage of deep learning and climate
            25:21

            The marriage of deep learning and climate

            Karen A. McKinnon

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Global ocean wind speed estimation with CyGNSSnet
            04:56

            Global ocean wind speed estimation with CyGNSSnet

            Caroline Arnold, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Unleashing the Power of Industrial Big Data through Scalable Manual Labeling
            02:08

            Unleashing the Power of Industrial Big Data through Scalable Manual Labeling

            Bruno Paes Leao, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Sparse uncertainty representation in deep learning with inducing weights
            11:35

            Sparse uncertainty representation in deep learning with inducing weights

            Hippolyt Ritter, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen