Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Revisiting 3D Object Detection From an Egocentric Perspective
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Revisiting 3D Object Detection From an Egocentric Perspective
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Revisiting 3D Object Detection From an Egocentric Perspective

            Dez 6, 2021

            Sprecher:innen

            BD

            Boyang Deng

            Sprecher:in · 1 Follower:in

            CQ

            Charles Qi

            Sprecher:in · 0 Follower:innen

            MN

            Mahyar Najibi

            Sprecher:in · 0 Follower:innen

            Über

            3D object detection is a key module for safety-critical robotics applications such as autonomous driving. For these applications, we care most about how the detections affect the ego-agent’s behavior and safety (the egocentric perspective). Intuitively, we seek more accurate descriptions of object geometry when it’s more likely to interfere with the ego-agent’s motion trajectory. However, current detection metrics, based on box Intersection-over-Union (IoU), are object-centric and aren’t designe…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Demonstrations
            14:21

            Demonstrations

            Suma Bailis, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Platform Design Problem
            10:11

            The Platform Design Problem

            Christos Papadimitriou, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Compressive Visual Representations
            06:29

            Compressive Visual Representations

            Kuang-Huei Lee, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            DRIVE: One-bit Distributed Mean Estimation
            14:07

            DRIVE: One-bit Distributed Mean Estimation

            Shay Vargaftik, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
            15:06

            Reliable Post hoc Explanations: Modeling Uncertainty in Explainability

            Dylan Z. Slack, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Leveraging machine learning for less developed languages: Progress on Urdu text detection
            10:52

            Leveraging machine learning for less developed languages: Progress on Urdu text detection

            Hazrat Ali

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen