Dez 6, 2021
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 1 Follower:in
Graph Convolutional Networks (GCNs), aiming to obtain the representation of a node by aggregating its neighbors, have demonstrated great power in tackling various analytics tasks on graph (network) data. The remarkable performance of GCNs typically relies on the homophily assumption of networks, while such assumption cannot always be satisfied, since the heterophily or randomness are also widespread in real-world. This gives rise to one fundamental question: whether networks with different structural properties should adopt different propagation mechanisms? In this paper, we first conduct an experimental investigation. Surprisingly, we discover that there are actually segmentation rules for the propagation mechanism, i.e., 1-hop network neighbors, 2-hop neighbors and k-nearest neighbor (kNN) are more suitable as neighborhoods of network with complete homophily, complete heterophily and randomness, respectively. However, the real-world networks are complex, and may present diverse structural properties, e.g., the network dominated by homophily may contain a small amount of randomness. So can we reasonably utilize these segmentation rules to design an universal propagation mechanism independent of the network structural assumption? To tackle this challenge, we develop a new universal GCN framework, namely U-GCN. It first introduces a multi-type convolution to extract information from 1-hop network, 2-hop network and kNN network simultaneously, and then designs a discriminative aggregation to sufficiently fuse them aiming to given learning objectives. Extensive experiments demonstrate the superiority of U-GCN over state-of-the-arts.Graph Convolutional Networks (GCNs), aiming to obtain the representation of a node by aggregating its neighbors, have demonstrated great power in tackling various analytics tasks on graph (network) data. The remarkable performance of GCNs typically relies on the homophily assumption of networks, while such assumption cannot always be satisfied, since the heterophily or randomness are also widespread in real-world. This gives rise to one fundamental question: whether networks with different struc…
Konto · 1,9k Follower:innen
Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.
Professionelle Aufzeichnung und Livestreaming – weltweit.
Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind
Shaojie Li, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Moritz Hardt, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Saahil Jain, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%