Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Universal Graph Convolutional Networks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Universal Graph Convolutional Networks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Universal Graph Convolutional Networks

            Dez 6, 2021

            Sprecher:innen

            DJ

            Di Jin

            Sprecher:in · 0 Follower:innen

            ZY

            Zhizhi Yu

            Sprecher:in · 0 Follower:innen

            CH

            Cuiying Huo

            Sprecher:in · 0 Follower:innen

            Über

            Graph Convolutional Networks (GCNs), aiming to obtain the representation of a node by aggregating its neighbors, have demonstrated great power in tackling various analytics tasks on graph (network) data. The remarkable performance of GCNs typically relies on the homophily assumption of networks, while such assumption cannot always be satisfied, since the heterophily or randomness are also widespread in real-world. This gives rise to one fundamental question: whether networks with different struc…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme
            03:42

            Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

            Shaojie Li, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Ising Model Selection Using l1-Regularized Linear Regression: A Statistical Mechanics Analysis
            09:36

            Ising Model Selection Using l1-Regularized Linear Regression: A Statistical Mechanics Analysis

            Xiangming Meng, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards efficient end-to-end speech recognition with biologically-inspired neural networks
            05:13

            Towards efficient end-to-end speech recognition with biologically-inspired neural networks

            Thomas Bohnstingl, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Panel Discussion 2
            30:56

            Panel Discussion 2

            Moritz Hardt, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Risk-Aware Transfer in Reinforcement Learning using Successor Features
            12:06

            Risk-Aware Transfer in Reinforcement Learning using Successor Features

            Mike Gimelfarb, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            RadGraph: Extracting Clinical Entities and Relations from Radiology Reports
            12:36

            RadGraph: Extracting Clinical Entities and Relations from Radiology Reports

            Saahil Jain, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen