Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Provably Efficient Reinforcement Learning with Linear Function Approximation under Adaptivity Constraints
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Provably Efficient Reinforcement Learning with Linear Function Approximation under Adaptivity Constraints
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Provably Efficient Reinforcement Learning with Linear Function Approximation under Adaptivity Constraints

            Dez 6, 2021

            Sprecher:innen

            TW

            Tianhao Wang

            Řečník · 0 sledujících

            DZ

            Dongruo Zhou

            Řečník · 0 sledujících

            QG

            Quanquan Gu

            Řečník · 5 sledujících

            Über

            We study reinforcement learning (RL) with linear function approximation under the adaptivity constraint. We consider two popular limited adaptivity models: the batch learning model and the rare policy switch model, and propose two efficient online RL algorithms for episodic linear Markov decision processes, where the transition probability and the reward function can be represented as a linear function of some known feature mapping. In specific, for the batch learning model, our proposed LSVI-U…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            DECAF:  Generating Fair Synthetic Data Using Causally-Aware Generative Networks
            09:53

            DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

            Trent Kyono, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Time-series Generation by Contrastive Imitation
            08:47

            Time-series Generation by Contrastive Imitation

            Dan Jarrett, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Revisiting Deep Learning Models for Tabular Data
            12:14

            Revisiting Deep Learning Models for Tabular Data

            Yury Gorishniy, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 2 diváků, což je 0.2 %

            Communication-Efficient Federated Learning for Neural Machine Translation
            05:00

            Communication-Efficient Federated Learning for Neural Machine Translation

            Tanya Roosta, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Parametrized Quantum Policies for Reinforcement Learning
            14:12

            Parametrized Quantum Policies for Reinforcement Learning

            Sofiene Jerbi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Multi-Agent Reinforcement Learning in Stochastic Networked Systems
            11:20

            Multi-Agent Reinforcement Learning in Stochastic Networked Systems

            Yiheng Lin, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen