Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

            6. prosince 2021

            Řečníci

            CR

            Clémence Réda

            Speaker · 0 followers

            AT

            Andrea Tirinzoni

            Speaker · 0 followers

            RD

            Rémy Degenne

            Speaker · 0 followers

            O prezentaci

            We study the problem of the identification of m arms with largest means under a fixed error rate δ (fixed-confidence Top-m identification), for misspecified linear bandit models. This problem is motivated by practical applications, especially in medicine and recommendation systems, where linear models are popular due to their simplicity and the existence of efficient algorithms, but in which data inevitably deviates from linearity. In this work, we first derive a tractable lower bound on the sam…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Account · 1.9k followers

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Multi-task Learning of Order-Consistent Causal Graphs
            14:35

            Multi-task Learning of Order-Consistent Causal Graphs

            Xinshi Chen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Learning Value Functions from Undirected State-only Experience
            05:04

            Learning Value Functions from Undirected State-only Experience

            Matthew Chang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks
            10:19

            Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks

            Neil Band, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Robust Counterfactual Explanations on Graph Neural Networks
            13:08

            Robust Counterfactual Explanations on Graph Neural Networks

            Mohit Bajaj, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Collaborative Causal Discovery with Atomic Interventions
            11:09

            Collaborative Causal Discovery with Atomic Interventions

            Raghavendra Addanki, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Natural and Artificial Reinforcement Learning
            30:08

            Natural and Artificial Reinforcement Learning

            Kenji Doya

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021