Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Invariance Principle Meets Information Bottleneck for OOD generalization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Invariance Principle Meets Information Bottleneck for OOD generalization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Invariance Principle Meets Information Bottleneck for OOD generalization

            Dez 6, 2021

            Sprecher:innen

            KA

            Kartik Ahuja

            Sprecher:in · 0 Follower:innen

            EC

            Ethan Caballero

            Sprecher:in · 0 Follower:innen

            DZ

            Dinghuai Zhang

            Sprecher:in · 2 Follower:innen

            Über

            The invariance principle from causality is at the heart of notable approaches such as invariant risk minimization (IRM) that seek to address out-of-distribution (OOD) generalization failures. Despite the promising theory, invariance principle-based approaches fail in common classification tasks, where invariant (causal) features capture all the information about the label. Are these failures due to the methods failing to capture the invariance? Or is the invariance principle itself insufficient?…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Mathematik

            Kategorie · 2,4k Präsentationen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Welcome and Introduction
            03:58

            Welcome and Introduction

            Pieter Abbeel

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Panel
            44:46

            Panel

            Been Kim, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Meta Arcade: A Configurable Environment Suite for Deep Reinforcement Learning and Meta-Learning
            05:09

            Meta Arcade: A Configurable Environment Suite for Deep Reinforcement Learning and Meta-Learning

            Ted Staley, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Nearly Horizon-Free Offline Reinforcement Learning
            08:44

            Nearly Horizon-Free Offline Reinforcement Learning

            Tongzheng Ren, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
            10:14

            Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks

            Tianze Zheng, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On Blame Attribution for Accountable Multi-Agent Sequential Decision Making
            07:49

            On Blame Attribution for Accountable Multi-Agent Sequential Decision Making

            Stelion Triantafyllou, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen