Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Cryptographic Hardness of Learning Single Periodic Neurons
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Cryptographic Hardness of Learning Single Periodic Neurons
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Cryptographic Hardness of Learning Single Periodic Neurons

            6. prosince 2021

            Řečníci

            MJS

            Min Jae Song

            Sprecher:in · 0 Follower:innen

            IZ

            Ilias Zadik

            Sprecher:in · 0 Follower:innen

            JB

            Joan Bruna

            Sprecher:in · 4 Follower:innen

            O prezentaci

            We show a simple reduction which demonstrates the cryptographic hardness of learning a single periodic neuron over isotropic Gaussian distributions in the presence of noise. More precisely, our reduction shows that any polynomial-time algorithm (not necessarily gradient-based) for learning such functions under small noise implies a polynomial-time quantum algorithm for solving worst-case lattice problems which form the foundation of lattice-based cryptography. Our core hard family of functions,…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Kronecker Decomposition for GPT Compression
            05:12

            Kronecker Decomposition for GPT Compression

            Ali Edalati, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Good Classification Measures and How to Find Them
            13:26

            Good Classification Measures and How to Find Them

            Martijn Gösgens, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Regularization in ResNet with Stochastic Depth
            13:45

            Regularization in ResNet with Stochastic Depth

            Soufiane Hayou, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Quantifying Model Predictive Uncertainty with Perturbation Theory
            05:02

            Quantifying Model Predictive Uncertainty with Perturbation Theory

            Rishabh Singh, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning latent causal graphs via mixture oracles
            12:33

            Learning latent causal graphs via mixture oracles

            Bohdan Kivva, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Can Less be More? When Increasing-to-Balancing Label Noise Rates Considered Beneficial
            14:49

            Can Less be More? When Increasing-to-Balancing Label Noise Rates Considered Beneficial

            Yang Liu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021