Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: MAP Propagation Algorithm: Faster Learning with a Team of Reinforcement Learning Agents
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            MAP Propagation Algorithm: Faster Learning with a Team of Reinforcement Learning Agents
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            MAP Propagation Algorithm: Faster Learning with a Team of Reinforcement Learning Agents

            Dez 6, 2021

            Sprecher:innen

            SC

            Stephen Chung

            Sprecher:in · 0 Follower:innen

            Über

            Nearly all state-of-the-art deep learning algorithms rely on error backpropagation, which is generally regarded as biologically implausible. An alternative way of training an artificial neural network is through treating each unit in the network as a reinforcement learning agent, and thus the network is considered as a team of agents. As such, all units can be trained by REINFORCE, a local learning rule modulated by a global signal that is more consistent with biologically observed forms of syna…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            BayesIMP: Uncertainty Quantification for Causal Data Fusion
            15:00

            BayesIMP: Uncertainty Quantification for Causal Data Fusion

            Siu Lun Chau, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Unintended Selection: Persistent Qualification Rate Disparities and Interventions
            15:04

            Unintended Selection: Persistent Qualification Rate Disparities and Interventions

            Reilly Raab, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering
            14:05

            Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering

            Vincent Sitzmann, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contributed Talks in Session 1
            29:38

            Contributed Talks in Session 1

            Sebastian Stich, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
            10:08

            Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation

            Emmanuel Bengio, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Universal Graph Convolutional Networks
            10:30

            Universal Graph Convolutional Networks

            Di Jin, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen