Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: NN-Baker: A Neural-Network Infused Algorithmic Framework for Optimization Problems on Geometric Intersection Graphs
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            NN-Baker: A Neural-Network Infused Algorithmic Framework for Optimization Problems on Geometric Intersection Graphs
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            NN-Baker: A Neural-Network Infused Algorithmic Framework for Optimization Problems on Geometric Intersection Graphs

            Dez 6, 2021

            Sprecher:innen

            EM

            Evan McCarty

            Sprecher:in · 0 Follower:innen

            QZ

            Qi Zhao

            Sprecher:in · 0 Follower:innen

            AS

            Anastasios Sidiropoulos

            Sprecher:in · 0 Follower:innen

            Über

            Recent years have witnessed a surge of approaches to use neural networks to help tackle combinatorial optimization problems, including graph optimization problems. However, theoretical understanding of such approaches remains limited. In this paper, we consider the geometric setting, where graphs are induced by points in a fixed dimensional Euclidean space. We show that several graph optimization problems can be approximated by an algorithm that is polynomial in graph size n via a framework we p…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Approximate Inference in Bayesian DL
            09:41

            Approximate Inference in Bayesian DL

            Andrew Gordon Wilson, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Cockpit: A Practical Debugging Tool for the Training of Deep Neural Networks
            07:02

            Cockpit: A Practical Debugging Tool for the Training of Deep Neural Networks

            Frank Schneider, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Meta-learning from sparse recovery
            01:27

            Meta-learning from sparse recovery

            Beicheng Lou, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Risk Monotonicity in Statistical Learning
            15:01

            Risk Monotonicity in Statistical Learning

            Zakaria Mhammedi

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Taxonomizing local versus global structure in neural network loss landscapes
            13:56

            Taxonomizing local versus global structure in neural network loss landscapes

            Yaoqing Yang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen