Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

            Dez 6, 2021

            Sprecher:innen

            YL

            Yu Li

            Sprecher:in · 0 Follower:innen

            ML

            Min Li

            Sprecher:in · 0 Follower:innen

            QL

            Qiuxia Lai

            Sprecher:in · 0 Follower:innen

            Über

            Deep learning (DL) systems are notoriously difficult to test and debug due to the lack of correctness proof and the huge test input space to cover. Given the ubiquitous unlabeled test data and high labeling cost, in this paper, we propose a novel test prioritization technique, namely TestRank, which aims at revealing more model failures with less labeling effort. TestRank brings order into the unlabeled test data according to their likelihood of being a failure, i.e., their failure-revealing cap…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            An Automated System for Detecting Visual Damages of Wind Turbine Blades
            05:16

            An Automated System for Detecting Visual Damages of Wind Turbine Blades

            Linh Nguyen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Closing Remarks
            04:51

            Closing Remarks

            Rowan McAllister

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            URLB: Unsupervised Reinforcement Learning Benchmark
            08:48

            URLB: Unsupervised Reinforcement Learning Benchmark

            Michael Laskin, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Gaussian Dropout as an Information Bottleneck Layer
            10:00

            Gaussian Dropout as an Information Bottleneck Layer

            Melanie Ray, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            RadGraph: Extracting Clinical Entities and Relations from Radiology Reports
            12:36

            RadGraph: Extracting Clinical Entities and Relations from Radiology Reports

            Saahil Jain, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Machine Learning adn PDEs
            48:52

            Machine Learning adn PDEs

            Weinan E

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen