Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Fast Abductive Learning by Similarity-based Consistency Optimization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Fast Abductive Learning by Similarity-based Consistency Optimization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Fast Abductive Learning by Similarity-based Consistency Optimization

            Dez 6, 2021

            Sprecher:innen

            YH

            Yu-Xuan Huang

            Sprecher:in · 1 Follower:in

            WD

            Wang-Zhou Dai

            Sprecher:in · 1 Follower:in

            LC

            Le-Wen Cai

            Sprecher:in · 1 Follower:in

            Über

            To utilize the raw inputs and symbolic knowledge simultaneously, some recent neuro-symbolic learning methods use abduction, i.e., abductive reasoning, to integrate sub-symbolic perception and logical inference. While the perception model, e.g., a neural network, outputs some facts that are inconsistent with the symbolic background knowledge base, abduction can help revise the incorrect perceived facts by minimizing the inconsistency between them and the background knowledge. However, to enable e…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Visualization of nonlinear modal structures for three-dimensional unsteady fluid flows with customized decoder design
            05:02

            Visualization of nonlinear modal structures for three-dimensional unsteady fluid flows with customized decoder design

            Kazuto Hasegawa, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Factored Policy Gradients: Leveraging Structure for Efficient Learning in MOMDPs
            14:40

            Factored Policy Gradients: Leveraging Structure for Efficient Learning in MOMDPs

            T. Spooner, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            REAL2: An end-to-end memory-augmented solver for math word problems
            04:46

            REAL2: An end-to-end memory-augmented solver for math word problems

            Shifeng Huang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Replay-Guided Adversarial Environment Design
            12:04

            Replay-Guided Adversarial Environment Design

            Minqi Jiang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Derivative-Free Policy Optimization for Linear Risk-Sensitive and Robust Control Design
            15:57

            Derivative-Free Policy Optimization for Linear Risk-Sensitive and Robust Control Design

            Kaiqing Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Long-Short Transformer: Efficient Transformers for Language and Vision
            11:44

            Long-Short Transformer: Efficient Transformers for Language and Vision

            Chen Zhu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen