Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Neural Active Learning with Performance Guarantees
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Neural Active Learning with Performance Guarantees
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Neural Active Learning with Performance Guarantees

            6. prosince 2021

            Řečníci

            ZW

            Zhilei Wang

            Sprecher:in · 0 Follower:innen

            PA

            Pranjal Awasthi

            Sprecher:in · 0 Follower:innen

            CD

            Christoph Dann

            Sprecher:in · 0 Follower:innen

            O prezentaci

            We investigate the problem of active learning in the streaming setting in non-parametric regimes, where the labels are stochastically generated from a class of functions on which we make no assumptions whatsoever. We rely on recently proposed Neural Tangent Kernel (NTK) approximation tools to construct a suitable neural embedding that determines the feature space the algorithm operates on and the learned model computed atop. Since the shape of the label requesting threshold is tightly related to…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Learning Rules with Stratified Negation in Differentiable ILP
            09:46

            Learning Rules with Stratified Negation in Differentiable ILP

            Giri P Krishnan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Diverse Message Passing for Attribute with Heterophily
            12:59

            Diverse Message Passing for Attribute with Heterophily

            Mengzhe Li, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
            10:22

            An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias

            Lu Yu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The ongoing research in University of Michigan and Ford Center pro Motonomous VehiclesVs
            40:59

            The ongoing research in University of Michigan and Ford Center pro Motonomous VehiclesVs

            Matt Johnson-Roberson

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Orthogonal Quantile Regression
            11:13

            Orthogonal Quantile Regression

            Shai Feldman, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Identifying ATT&CK Tactics in Android Malware Control Flow Graph Through Graph Representation Learning and Interpretability
            03:09

            Identifying ATT&CK Tactics in Android Malware Control Flow Graph Through Graph Representation Learning and Interpretability

            Jeff Fairbanks, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021