Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Parallel and Efficient Hierarchical k-Median Clustering
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Parallel and Efficient Hierarchical k-Median Clustering
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Parallel and Efficient Hierarchical k-Median Clustering

            Dez 6, 2021

            Sprecher:innen

            VC

            Vincent Cohen-addad

            Sprecher:in · 0 Follower:innen

            CS

            Christian Sohler

            Sprecher:in · 0 Follower:innen

            SL

            Silvio Lattanzi

            Sprecher:in · 0 Follower:innen

            Über

            As a fundamental unsupervised learning task, hierarchical clustering has been extensively studied in the past decade. In particular, standard metric formulations as hierarchical k-center, k-means, and k-median received a lot of attention and the problems have been studied extensively in different models of computation. Despite all this interest, not many efficient parallel algorithms are known for these problems. In this paper we introduce a new parallel algorithm for the Euclidean hierarchical…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Variational Combinatorial Sequential Monte Carlo Methods for Bayesian Phylogenetic Inference
            25:17

            Variational Combinatorial Sequential Monte Carlo Methods for Bayesian Phylogenetic Inference

            Antonio Moretti, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Autonomous Debris Pile Estimation Challenge
            06:09

            Autonomous Debris Pile Estimation Challenge

            Bill Basener, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            VoiceMixer: Adversarial Voice Style Mixup
            10:18

            VoiceMixer: Adversarial Voice Style Mixup

            Sang-Hoon Lee, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Discussion: Aleksander Mądry, Ernest Mwebaze, Suchi Saria
            24:17

            Discussion: Aleksander Mądry, Ernest Mwebaze, Suchi Saria

            Aleksander Madry, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Math Programming based Reinforcement Learning for Multi-Echelon Inventory Management
            05:10

            Math Programming based Reinforcement Learning for Multi-Echelon Inventory Management

            Pavithra Harsha, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning to Predict Trustworthiness with Steep Slope Loss
            12:22

            Learning to Predict Trustworthiness with Steep Slope Loss

            Yan Luo, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen