Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators

            Dez 6, 2021

            Sprecher:innen

            YL

            Yunhui Long

            Sprecher:in · 0 Follower:innen

            BW

            Boxin Wang

            Sprecher:in · 1 Follower:in

            ZY

            Zhuolin Yang

            Sprecher:in · 0 Follower:innen

            Über

            Recent advances in machine learning have largely benefited from the massive accessible training data. However, large-scale data sharing has raised great privacy concerns. In this work, we propose a novel privacy-preserving data Generative model based on the PATE framework (G-PATE), aiming to train a scalable differentially private data generator that preserves high generated data utility. Our approach leverages generative adversarial nets to generate data, combined with private aggregation amon…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Performance Analysis of Quantum Machine Learning Classifiers
            05:50

            Performance Analysis of Quantum Machine Learning Classifiers

            Olawale Ayoade, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contextual Bandits: Bridging Theory and Practice
            29:38

            Contextual Bandits: Bridging Theory and Practice

            Susan Athey, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Beyond Gaussian Likelihood
            14:16

            Beyond Gaussian Likelihood

            César Lincoln C Mattos

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Skellam Mechanism for Differentially Private Federated Learning
            15:37

            The Skellam Mechanism for Differentially Private Federated Learning

            Naman Agarwal, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Row-clustering of a Point Process-valued Matrix
            14:30

            Row-clustering of a Point Process-valued Matrix

            Lihao Yin, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction
            10:42

            ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

            Gengshan Yang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen