Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators

            6. prosince 2021

            Řečníci

            YL

            Yunhui Long

            Sprecher:in · 0 Follower:innen

            BW

            Boxin Wang

            Sprecher:in · 1 Follower:in

            ZY

            Zhuolin Yang

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Recent advances in machine learning have largely benefited from the massive accessible training data. However, large-scale data sharing has raised great privacy concerns. In this work, we propose a novel privacy-preserving data Generative model based on the PATE framework (G-PATE), aiming to train a scalable differentially private data generator that preserves high generated data utility. Our approach leverages generative adversarial nets to generate data, combined with private aggregation amon…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Automatic Symmetry Discovery with Lie Algebra Convolutional Network
            14:42

            Automatic Symmetry Discovery with Lie Algebra Convolutional Network

            Nima Dehmamy, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme
            03:42

            Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

            Shaojie Li, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Rapid Data Development Platform for Long Tail Vision Applications
            02:00

            A Rapid Data Development Platform for Long Tail Vision Applications

            Phoenix X. Huang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fair SA: Sensitivity Analysis for Fairness using Face Recognition
            03:23

            Fair SA: Sensitivity Analysis for Fairness using Face Recognition

            Aparna R. Joshi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            AA3DNet: Attention Augmented Real Time 3D Object Detection
            05:55

            AA3DNet: Attention Augmented Real Time 3D Object Detection

            Abhinav Sagar

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On Success and Simplicity: A Second Look at Transferable Targeted Attacks
            05:34

            On Success and Simplicity: A Second Look at Transferable Targeted Attacks

            Zhengyu Zhao, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021