Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Distributed Machine Learning with Sparse Heterogeneous Data
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Distributed Machine Learning with Sparse Heterogeneous Data
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Distributed Machine Learning with Sparse Heterogeneous Data

            Dez 6, 2021

            Sprecher:innen

            DR

            Dominic Richards

            Sprecher:in · 0 Follower:innen

            SN

            Sahand Negahban

            Sprecher:in · 0 Follower:innen

            PR

            Patrick Rebeschini

            Sprecher:in · 0 Follower:innen

            Über

            Motivated by distributed machine learning settings such as Federated Learning, we consider the problem of fitting a statistical model across a distributed collection of heterogeneous data sets whose similarity structure is encoded by a graph topology. Precisely, we analyse the case where each node is associated with fitting a sparse linear model, and edges join two nodes if the difference of their solutions is also sparse. We propose a method based on Basis Pursuit Denoising with a total variati…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Meta-Learning Reliable Priors in the Function Space
            15:13

            Meta-Learning Reliable Priors in the Function Space

            Jonas Rothfuss, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contract Understanding Atticus Dataset (CUAD)
            05:04

            Contract Understanding Atticus Dataset (CUAD)

            Dan Hendrycks, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multitask Learning for Estimating Power Plant Greenhouse Gas Emissions from Satellite Imagery
            05:18

            Multitask Learning for Estimating Power Plant Greenhouse Gas Emissions from Satellite Imagery

            Joëlle Hanna, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Design and Construction with Varying-Sized Materials via Prioritized Memory Resets
            02:58

            Learning Design and Construction with Varying-Sized Materials via Prioritized Memory Resets

            Yunfei Li, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Opening remarks by the organizers
            06:19

            Opening remarks by the organizers

            Julia Vogt

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Optimal Gradient-based Algorithms for Non-concave Bandit Optimization
            10:53

            Optimal Gradient-based Algorithms for Non-concave Bandit Optimization

            Qi Lei, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen