Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Generative vs. Discriminative: Rethinking Meta-Continual Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Generative vs. Discriminative: Rethinking Meta-Continual Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Generative vs. Discriminative: Rethinking Meta-Continual Learning

            Dez 6, 2021

            Sprecher:innen

            MB

            Mohammadamin Banayeeanzade

            Sprecher:in · 0 Follower:innen

            RM

            Rasoul Mirzaiezadeh

            Sprecher:in · 0 Follower:innen

            HH

            Hosein Hasani

            Sprecher:in · 0 Follower:innen

            Über

            Deep neural networks have achieved human-level capabilities in various learning tasks. However, they generally lose performance in more realistic scenarios like learning in a continual manner. In contrast, humans can incorporate their prior knowledge to learn new concepts efficiently without forgetting older ones. In this work, we leverage meta-learning to encourage the model to learn how to learn continually. Inspired by human concept learning, we develop a generative classifier that efficientl…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Safety-guaranteed trajectory planning and control based on GP estimation for unmanned surface vessels
            05:00

            Safety-guaranteed trajectory planning and control based on GP estimation for unmanned surface vessels

            Shuhao Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reinforcement Learning with Feedback from Multiple Humans with Diverse Skills
            05:09

            Reinforcement Learning with Feedback from Multiple Humans with Diverse Skills

            Taku Yamagata, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Human-Computer Partnerships
            30:14

            Human-Computer Partnerships

            Wendy Mackay

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Q&A for Contributed talks 4,5,6
            09:17

            Q&A for Contributed talks 4,5,6

            Irene Y Chen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Introduction
            10:57

            Introduction

            Weiwei Yang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole Slide Imaging
            16:39

            Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole Slide Imaging

            Zhenzhen Wang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen