Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by Finding Flat Minima
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by Finding Flat Minima
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by Finding Flat Minima

            Dez 6, 2021

            Sprecher:innen

            GS

            Guangyuan Shi

            Sprecher:in · 0 Follower:innen

            JC

            Jiaxin Chen

            Sprecher:in · 0 Follower:innen

            WZ

            Wenlong Zhang

            Sprecher:in · 0 Follower:innen

            Über

            This paper considers incremental few-shot learning, which requires a model to continually recognize new categories with only a few examples provided. Our study shows that existing methods severely suffer from catastrophic forgetting, a well-known problem in incremental learning, which is aggravated due to data scarcity and imbalance in the few-shot setting. Our analysis further suggests that to prevent catastrophic forgetting, actions need to be taken in the primitive stage – the training of bas…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            The Complexity of Bayesian Network Learning: Revisiting the Superstructure
            17:35

            The Complexity of Bayesian Network Learning: Revisiting the Superstructure

            Robert Ganian, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning
            05:52

            Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning

            Timo Milbich, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Disrupting Deep Uncertainty Estimation Without Harming Accuracy
            09:14

            Disrupting Deep Uncertainty Estimation Without Harming Accuracy

            Ido Galil, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Barrier Certificates: Towards Safe Reinforcement Learning with Zero Training-time Violations
            08:53

            Learning Barrier Certificates: Towards Safe Reinforcement Learning with Zero Training-time Violations

            Yuping Luo, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Programming Supervision for Data-Centric Al
            19:52

            Programming Supervision for Data-Centric Al

            Paroma Varma

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fast rates for prediction with limited expert advice
            10:13

            Fast rates for prediction with limited expert advice

            El Mehdi Saad, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen