Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

            Dez 6, 2021

            Sprecher:innen

            SW

            Shiqi Wang

            Sprecher:in · 0 Follower:innen

            HZ

            Huan Zhang

            Sprecher:in · 0 Follower:innen

            KX

            Kaidi Xu

            Sprecher:in · 0 Follower:innen

            Über

            Recent works in neural network verification show that cheap incomplete verifiers such as CROWN can be used in Branch-and-Bound (BaB) methods and significantly accelerate complete verification on GPUs. However, they cannot fully handle the neuron split constraints introduced by BaB that are commonly handled by expensive linear programming (LP) solvers, leading to looser bounds and hurting verification efficiency. In this work, we develop β-CROWN, a new bound propagation based method that can full…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen