Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation

            Dez 6, 2021

            Sprecher:innen

            EB

            Emmanuel Bengio

            Řečník · 0 sledujících

            MJ

            Moksh Jain

            Řečník · 1 sledující

            MK

            Maksym Korablyov

            Řečník · 0 sledujících

            Über

            This paper is about the problem of learning a stochastic policy for generating an object (like a molecular graph) from a sequence of actions, such that the probability of generating an object is proportional to a given positive reward for that object. Whereas standard return maximization tends to converge to a single return-maximizing sequence, there are cases where we would like to sample a diverse set of high-return solutions. These arise, for example, in black-box function optimization when f…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Kategorien

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Meta-Learning Reliable Priors in the Function Space
            15:13

            Meta-Learning Reliable Priors in the Function Space

            Jonas Rothfuss, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Channel Permutations for N:M Sparsity
            12:41

            Channel Permutations for N:M Sparsity

            Jeff Pool, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 1 diváků, což je 0.1 %

            LazyPPL: Laziness and types in non-parametric probabilistic programs
            05:48

            LazyPPL: Laziness and types in non-parametric probabilistic programs

            Sam Staton, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Unifying Width-Reduced Methods for Quasi-Self-Concordant Optimization
            12:15

            Unifying Width-Reduced Methods for Quasi-Self-Concordant Optimization

            Deeksha Adil, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Closing & Awards of the ImageNet: Past, Present, and Future
            04:55

            Closing & Awards of the ImageNet: Past, Present, and Future

            Seong Joon Oh

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            DRIVE: One-bit Distributed Mean Estimation
            14:07

            DRIVE: One-bit Distributed Mean Estimation

            Shay Vargaftik, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen