Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Efficient Active Learning for Gaussian Process Classification by Error Reduction
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Efficient Active Learning for Gaussian Process Classification by Error Reduction
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Efficient Active Learning for Gaussian Process Classification by Error Reduction

            Dez 6, 2021

            Sprecher:innen

            GZ

            Guang Zhao

            Sprecher:in · 0 Follower:innen

            ERD

            Edward R. Dougherty

            Sprecher:in · 0 Follower:innen

            BY

            Byung-Jun Yoon

            Sprecher:in · 0 Follower:innen

            Über

            Active learning sequentially selects the best instance for labeling by optimizing an acquisition function to enhance data/label efficiency. The selection can be either from a discrete instance set (pool-based scenario) or a continuous instance space (query synthesis scenario). In this work, we study both active learning scenarios for Gaussian Process Classification (GPC). The existing active learning strategies that maximize the Estimated Error Reduction (EER) aim at reducing the classification…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Permuton-induced Chinese Restaurant Process
            11:16

            Permuton-induced Chinese Restaurant Process

            Masahiro Nakano, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bayesian Deep Learning
            7:03:00

            Bayesian Deep Learning

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Universal Graph Convolutional Networks
            10:30

            Universal Graph Convolutional Networks

            Di Jin, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Choice, Automation and Performance in ML Deployment with Apache TVM and OctoML
            34:25

            Choice, Automation and Performance in ML Deployment with Apache TVM and OctoML

            Luis Ceze

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bandit Phase Retrieval
            14:14

            Bandit Phase Retrieval

            Tor Lattimore, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CentripetalText: An Efficient Text Instance Representation for Scene Text Detection
            09:55

            CentripetalText: An Efficient Text Instance Representation for Scene Text Detection

            Tao Sheng, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen