Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Bias Out-of-the-Box: An Empirical Analysis of Intersectional Occupational Biases in Popular Generative Language Models
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Bias Out-of-the-Box: An Empirical Analysis of Intersectional Occupational Biases in Popular Generative Language Models
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Bias Out-of-the-Box: An Empirical Analysis of Intersectional Occupational Biases in Popular Generative Language Models

            Dez 6, 2021

            Sprecher:innen

            HRK

            Hannah R Kirk

            Řečník · 0 sledujících

            YJ

            Yennie Jun

            Řečník · 0 sledujících

            HI

            Haider Iqbal

            Řečník · 0 sledujících

            Über

            The capabilities of natural language models trained on large-scale data have increased immensely over the past few years. Open source libraries such as HuggingFace have made these models easily available and accessible. While prior research has identified biases in large language models, this paper considers biases contained in the most popular versions of these models when applied out-of-the-box for downstream tasks. We focus on generative language models as they are well-suited for extracting…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            SPP-EEGNET: An Input-Agnostic Self-supervised EEG Representation Model for Inter-Dataset Transfer Learning
            03:56

            SPP-EEGNET: An Input-Agnostic Self-supervised EEG Representation Model for Inter-Dataset Transfer Learning

            Xiaomin Li, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Opening remarks
            08:20

            Opening remarks

            Awa Dieng, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Diversity Enhanced Active Learning with Strictly Proper Scoring Rules
            13:21

            Diversity Enhanced Active Learning with Strictly Proper Scoring Rules

            Wei Tan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Optimal prediction of Markov chains with and without spectral gap
            14:23

            Optimal prediction of Markov chains with and without spectral gap

            Yanjun Han, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
            12:00

            Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

            Can Qin, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Referring Transformer: A One-step Approach to Multi-task Visual Grounding
            07:54

            Referring Transformer: A One-step Approach to Multi-task Visual Grounding

            Muchen Li, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen