Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Rate-Optimal Subspace Estimation on Random Graphs
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Rate-Optimal Subspace Estimation on Random Graphs
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Rate-Optimal Subspace Estimation on Random Graphs

            6. prosince 2021

            Řečníci

            ZZ

            Zhixin Zhou

            Sprecher:in · 0 Follower:innen

            FZ

            Fan Zhou

            Sprecher:in · 0 Follower:innen

            PL

            Ping Li

            Sprecher:in · 0 Follower:innen

            O prezentaci

            We study the theory of random bipartite graph whose adjacency matrix is generated according to a connectivity matrix M. We consider the bipartite graph to be sparse, i.e., the entries of M are upper bounded by certain sparsity parameter. We show that the performance of estimating the connectivity matrix M depends on the sparsity of the graph. We focus on two measurement of performance of estimation: the error of estimating M and the error of estimating the column space of M. In the first case, w…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Intelligent Sight and Sound (ISS): A Chronic Cancer Facial Pain Dataset
            04:39

            Intelligent Sight and Sound (ISS): A Chronic Cancer Facial Pain Dataset

            Catherine Ordun, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A novel notion of barycenter for probability distributions based on optimal weak mass transport
            14:34

            A novel notion of barycenter for probability distributions based on optimal weak mass transport

            Elsa Cazelles, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Distribution-free inference for regression: discrete, continuous, and in between
            08:19

            Distribution-free inference for regression: discrete, continuous, and in between

            Yonghoon Lee, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Maximum Mean Discrepancy for Generalization in the Presence of Distribution and Missingness Shift
            05:05

            Maximum Mean Discrepancy for Generalization in the Presence of Distribution and Missingness Shift

            Liwen Ouyang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Distributional Robustness in Histopathology trough Abstention
            04:58

            Distributional Robustness in Histopathology trough Abstention

            Surya Narayanan Hari, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Classic examples of  engineering responsibility
            09:01

            Classic examples of engineering responsibility

            Deborah Raji

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021