Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Charting and Navigating the Space of Solutions for Recurrent Neural Networks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Charting and Navigating the Space of Solutions for Recurrent Neural Networks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Charting and Navigating the Space of Solutions for Recurrent Neural Networks

            Dez 6, 2021

            Sprecher:innen

            ET

            Elia Turner

            Sprecher:in · 0 Follower:innen

            KD

            Kabir Dabholkar

            Sprecher:in · 0 Follower:innen

            OB

            Omri Barak

            Sprecher:in · 0 Follower:innen

            Über

            In recent years Recurrent Neural Networks (RNNs) were successfully used to model the way neural activity drives task-related behavior in animals, operating under the implicit assumption that the obtained solutions are universal. Observations in both neuroscience and in machine learning challenge this assumption. Animals can approach a given task with a variety of strategies, and training machine learning algorithms introduces the phenomenon of underspecification. These observations imply that ev…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Active 3D Shape Reconstruction from Vision and Touch
            08:31

            Active 3D Shape Reconstruction from Vision and Touch

            Edward J. Smith, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Compressing Pre-trained Language Models using Progressive Low Rank Decomposition
            04:51

            Compressing Pre-trained Language Models using Progressive Low Rank Decomposition

            Habib Hajimolahoseini, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Challenges of Adversarial Image Augmentations
            03:06

            Challenges of Adversarial Image Augmentations

            Arno Blaas, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            USCO-Solver: Solving Undetermined Stochastic Combinatorial Optimization Problems
            15:00

            USCO-Solver: Solving Undetermined Stochastic Combinatorial Optimization Problems

            Guangmo Tong

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis
            10:16

            UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis

            Zhu Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            OVD-Explorer: A General Information-theoretic Exploration Approach for Reinforcement Learning
            04:47

            OVD-Explorer: A General Information-theoretic Exploration Approach for Reinforcement Learning

            Jinyi Liu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen