Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Charting and Navigating the Space of Solutions for Recurrent Neural Networks
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Charting and Navigating the Space of Solutions for Recurrent Neural Networks
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Charting and Navigating the Space of Solutions for Recurrent Neural Networks

            6. prosince 2021

            Řečníci

            ET

            Elia Turner

            Sprecher:in · 0 Follower:innen

            KD

            Kabir Dabholkar

            Sprecher:in · 0 Follower:innen

            OB

            Omri Barak

            Sprecher:in · 0 Follower:innen

            O prezentaci

            In recent years Recurrent Neural Networks (RNNs) were successfully used to model the way neural activity drives task-related behavior in animals, operating under the implicit assumption that the obtained solutions are universal. Observations in both neuroscience and in machine learning challenge this assumption. Animals can approach a given task with a variety of strategies, and training machine learning algorithms introduces the phenomenon of underspecification. These observations imply that ev…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Flexible Learning of Sparse Neural Networks via Constrained L0 Regularization
            06:28

            Flexible Learning of Sparse Neural Networks via Constrained L0 Regularization

            Juan Ramirez, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Uncertainty Quantification for Ptychography using Normalizing Flows
            10:17

            Uncertainty Quantification for Ptychography using Normalizing Flows

            Agnimitra Dasgupta, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Type Inference as Optimization
            10:48

            Type Inference as Optimization

            Eirene V. Pandi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improving Transferability of Representations via Augmentation-Aware Self-Supervision
            10:10

            Improving Transferability of Representations via Augmentation-Aware Self-Supervision

            Hankook Lee, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Q&A 4
            15:41

            Q&A 4

            Felipe Tobar, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Automorphic Equivalence-aware Graph Neural Network
            12:48

            Automorphic Equivalence-aware Graph Neural Network

            Fengli Xu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021