Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Weisfeiler and Lehman Go Cellular: CW Networks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Weisfeiler and Lehman Go Cellular: CW Networks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Weisfeiler and Lehman Go Cellular: CW Networks

            Dez 6, 2021

            Sprecher:innen

            CB

            Cristian Bodnar

            Sprecher:in · 0 Follower:innen

            FF

            Fabrizio Frasca

            Sprecher:in · 0 Follower:innen

            NO

            Nina Otter

            Sprecher:in · 0 Follower:innen

            Über

            Graph Neural Networks (GNNs) are limited in their expressive power, struggle with long-range interactions and lack a principled way to model higher-order structures. These problems can be attributed to the strong coupling between the computational graph and the input graph structure. The recently proposed Message Passing Simplicial Networks naturally decouple these elements by performing message passing on the clique complex of the graph. Nevertheless, these models are severely constrained by th…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            The Situated Interactive Language Grounding Benchmark
            13:52

            The Situated Interactive Language Grounding Benchmark

            Victor Zhong, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Complexity of Sparse Tensor PCA
            15:10

            The Complexity of Sparse Tensor PCA

            Davin Choo, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Differentiable Programming in Molecular Physics
            29:58

            Differentiable Programming in Molecular Physics

            Frank Noé

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Optimizing Functionals on the Space of Probabilities with Input Convex Neural Network
            03:46

            Optimizing Functionals on the Space of Probabilities with Input Convex Neural Network

            David Alvarez-Melis, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Amortized inference of Gaussian process hyperparameters for improved concrete strength trajectory prediction
            06:54

            Amortized inference of Gaussian process hyperparameters for improved concrete strength trajectory prediction

            Kristen Severson, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Rethinking Calibration of Deep Neural Networks: Don´t Be Afraid of Overconfidence
            08:21

            Rethinking Calibration of Deep Neural Networks: Don´t Be Afraid of Overconfidence

            Deng-Bao Wang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen