Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Language models enable zero-shot prediction of the effects of mutations on protein function
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Language models enable zero-shot prediction of the effects of mutations on protein function
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Language models enable zero-shot prediction of the effects of mutations on protein function

            Dez 6, 2021

            Sprecher:innen

            JM

            Joshua Meier

            Sprecher:in · 1 Follower:in

            RR

            Roshan Rao

            Sprecher:in · 0 Follower:innen

            RV

            Robert Verkuil

            Sprecher:in · 0 Follower:innen

            Über

            Modeling the effect of sequence variation on function is a fundamental problem for understanding and designing proteins. Since evolution encodes information about function into patterns in protein sequences, unsupervised models of variant effects can be learned from sequence data. The approach to date has been to fit a model to a family of related sequences. The conventional setting is limited, since a new model must be trained for each prediction task. We show that using only zero-shot inferenc…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Model Adaptation: Historical Contrastive Learning for Unsupervised Domain Adaptation without Source Data
            04:37

            Model Adaptation: Historical Contrastive Learning for Unsupervised Domain Adaptation without Source Data

            Jiaxing Huang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            It Has Potential: Gradient-Driven Denoisers for Convergent Solutions to Inverse Problems
            05:22

            It Has Potential: Gradient-Driven Denoisers for Convergent Solutions to Inverse Problems

            Regev Cohen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bandits with Knapsacks: Beyond the Worst-Case Analysis
            14:42

            Bandits with Knapsacks: Beyond the Worst-Case Analysis

            Karthik Abinav Sankararaman, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Similarity and Matching of Neural Network Representations
            15:05

            Similarity and Matching of Neural Network Representations

            Adrián Csiszárik, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards Systematic Evaluation in Machine Learning through Automated Stress Test Creation
            02:04

            Towards Systematic Evaluation in Machine Learning through Automated Stress Test Creation

            David Madras, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            OSOA: One-Shot Online Adaptation of Deep Generative Models for Lossless Compression
            04:46

            OSOA: One-Shot Online Adaptation of Deep Generative Models for Lossless Compression

            Chen Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen