Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Language models enable zero-shot prediction of the effects of mutations on protein function
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Language models enable zero-shot prediction of the effects of mutations on protein function
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Language models enable zero-shot prediction of the effects of mutations on protein function

            6. prosince 2021

            Řečníci

            JM

            Joshua Meier

            Sprecher:in · 1 Follower:in

            RR

            Roshan Rao

            Sprecher:in · 0 Follower:innen

            RV

            Robert Verkuil

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Modeling the effect of sequence variation on function is a fundamental problem for understanding and designing proteins. Since evolution encodes information about function into patterns in protein sequences, unsupervised models of variant effects can be learned from sequence data. The approach to date has been to fit a model to a family of related sequences. The conventional setting is limited, since a new model must be trained for each prediction task. We show that using only zero-shot inferenc…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Kategorie

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Discovering and Achieving Goals with World Models
            13:18

            Discovering and Achieving Goals with World Models

            Russell Mendonca, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Practical, Label Private Deep Learning Training based on Secure Multiparty Computation and Differential Privacy
            03:22

            Practical, Label Private Deep Learning Training based on Secure Multiparty Computation and Differential Privacy

            Sen Yuan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Automated Labeling of Civil Air Patrol Imagery for Hurricane Ida: a Retrospective
            28:29

            Automated Labeling of Civil Air Patrol Imagery for Hurricane Ida: a Retrospective

            Chad Council, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On Contrastive Representations of Stochastic Processes
            10:59

            On Contrastive Representations of Stochastic Processes

            Emile Mathieu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Logarithmic Regret via Sublinear Hints
            14:36

            Logarithmic Regret via Sublinear Hints

            Aditya Bhaskara, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            BayesIMP: Uncertainty Quantification for Causal Data Fusion
            15:00

            BayesIMP: Uncertainty Quantification for Causal Data Fusion

            Siu Lun Chau, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021