Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: A Unified Framework for Alternating Offline Model Training and Policy Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            A Unified Framework for Alternating Offline Model Training and Policy Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            A Unified Framework for Alternating Offline Model Training and Policy Learning

            Okt 28, 2022

            Sprecher:innen

            SY

            Shentao Yang

            Sprecher:in · 0 Follower:innen

            SZ

            Shujian Zhang

            Sprecher:in · 0 Follower:innen

            YF

            Yihao Feng

            Sprecher:in · 0 Follower:innen

            Über

            In offline model-based reinforcement learning (offline MBRL), we learn a dynamic model from historically collected data, and then utilize the learned model and fixed dataset for policy learning, without further interacting with the environment. Offline MBRL algorithms can improve the efficiency and stability of policy learning over the model-free based algorithms. However, in most of the existing offline MBRL algorithms, the learning objectives for the dynamic models and the policies are isolate…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 962 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Efficient and Effective Multi-task Grouping via Meta Learning on Task Combinations
            04:50

            Efficient and Effective Multi-task Grouping via Meta Learning on Task Combinations

            Xiaozhuang Song, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Biological Learning of Irreducible Representations of Commuting Transformations
            03:37

            Biological Learning of Irreducible Representations of Commuting Transformations

            Alexander Genkin, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Compressible-composable NeRF via Rank-residual Decomposition
            04:40

            Compressible-composable NeRF via Rank-residual Decomposition

            Jiaxiang Tang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Stochastic Oracles and How to Define Them
            27:56

            Stochastic Oracles and How to Define Them

            Katya Scheinberg

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Overparameterization from Computational Constraints
            05:05

            Overparameterization from Computational Constraints

            Sanjam Garg, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Transformer-based normative modelling for anomaly detection of early schizophrenia
            13:37

            Transformer-based normative modelling for anomaly detection of early schizophrenia

            Pedro Ferreira Da Costa

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen