Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Improving Multi-Task Generalization via Regularizing Spurious Correlation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-008-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-008-alpha.b-cdn.net
      • sl-yoda-v2-stream-008-beta.b-cdn.net
      • 1159783934.rsc.cdn77.org
      • 1511376917.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Improving Multi-Task Generalization via Regularizing Spurious Correlation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Improving Multi-Task Generalization via Regularizing Spurious Correlation

            Nov 28, 2022

            Sprecher:innen

            ZH

            Ziniu Hu

            Sprecher:in · 0 Follower:innen

            ZZ

            Zhe Zhao

            Sprecher:in · 0 Follower:innen

            XY

            Xinyang Yi

            Sprecher:in · 0 Follower:innen

            Über

            Multi-Task Learning (MTL) is a powerful learning paradigm to improve generalization performance via knowledge sharing. However, existing studies find that MTL could sometimes hurt generalization, especially when two tasks are less correlated. One possible reason that hurts generalization is spurious correlation, i.e., some knowledge is spurious and not causally related to task labels, but the model could mistakenly utilize them and thus fail when such correlation changes. In MTL setup, there exi…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 963 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            On using pre-trained language models for RL: An NLP perspective
            21:06

            On using pre-trained language models for RL: An NLP perspective

            Machel Reid

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Simulation-guided Beam Search for Neural Combinatorial Optimization
            03:20

            Simulation-guided Beam Search for Neural Combinatorial Optimization

            Yeong-Dae Kwon

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improving Zero-Shot Generalization in Offline Reinforcement Learning using Generalized Similarity Functions
            05:03

            Improving Zero-Shot Generalization in Offline Reinforcement Learning using Generalized Similarity Functions

            Bogdan Mazoure, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Closing Remarks
            08:36

            Closing Remarks

            Miguel Felipe Arevalo-Castiblanco, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CLVR: Coordinate Linear Variance Reduction for Generalized Linear Programming
            04:53

            CLVR: Coordinate Linear Variance Reduction for Generalized Linear Programming

            Cheuk Yin Lin, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen