Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Bridging the Gap from Asymmetry Tricks to Decorrelation Principles in Non-contrastive Self-supervised Learning
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Bridging the Gap from Asymmetry Tricks to Decorrelation Principles in Non-contrastive Self-supervised Learning
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Bridging the Gap from Asymmetry Tricks to Decorrelation Principles in Non-contrastive Self-supervised Learning

            28. listopadu 2022

            Řečníci

            KL

            Kang-Jun Liu

            Speaker · 0 followers

            MS

            Masanori Suganuma

            Speaker · 0 followers

            TO

            Takayuki Okatani

            Speaker · 0 followers

            O prezentaci

            Recent non-contrastive methods for self-supervised representation learning show promising performance. While they are attractive since they do not need negative samples, it necessitates some mechanism to avoid collapsing into a trivial solution. Currently, there are two approaches to collapse prevention. One uses an asymmetric architecture on a joint embedding of input, e.g., BYOL and SimSiam, and the other imposes decorrelation criteria on the same joint embedding, e.g., Barlow-Twins and VICReg…

            Organizátor

            N2
            N2

            NeurIPS 2022

            Account · 961 followers

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models
            05:05

            On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models

            Kamil Deja, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Video compression dataset and benchmark of learning-based video-quality metrics
            04:28

            Video compression dataset and benchmark of learning-based video-quality metrics

            Anastasia Antsiferova, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Spectrum Random Masking for Generalization in Image-based Reinforcement Learning
            04:50

            Spectrum Random Masking for Generalization in Image-based Reinforcement Learning

            Yangru Huang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Kernel Memory Networks: A Unifying Framework for Memory Modeling
            04:17

            Kernel Memory Networks: A Unifying Framework for Memory Modeling

            Georgios Iatropoulos, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Squeezeformer: An Efficient Transformer for Automatic Speech Recognition
            04:59

            Squeezeformer: An Efficient Transformer for Automatic Speech Recognition

            Sehoon Kim, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            fficient Finetuning of Transformers for Source Code
            05:01

            fficient Finetuning of Transformers for Source Code

            Shamil Ayupov, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2022