Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Stochastic Online Learning with Feedback Graphs: Finite-Time and Asymptotic Optimality
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Stochastic Online Learning with Feedback Graphs: Finite-Time and Asymptotic Optimality
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Stochastic Online Learning with Feedback Graphs: Finite-Time and Asymptotic Optimality

            Nov 28, 2022

            Sprecher:innen

            TVM

            Teodor V. Marinov

            Sprecher:in · 0 Follower:innen

            MM

            Mehryar Mohri

            Sprecher:in · 4 Follower:innen

            JZ

            Julian Zimmert

            Sprecher:in · 0 Follower:innen

            Über

            We revisit the problem of stochastic online learning with feedbackgraphs, with the goal of devising algorithms that are optimal, up toconstants, both asymptotically and in finite time. We show that,surprisingly, the notion of optimal finite-time regret is not auniquely defined property in this context and that, in general, itis decoupled from the asymptotic rate. We discuss alternativechoices and propose a notion of finite-time optimality that we argueis meaningful. For that notion, we give an a…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 962 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Rethinking Explainability as a Dialogue: A Practitioner's Perspective
            04:05

            Rethinking Explainability as a Dialogue: A Practitioner's Perspective

            Hima Lakkaraju, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            S-PIFu: Integrating Parametric Human Models with PIFu for Single-view Clothed Human Reconstruction
            04:36

            S-PIFu: Integrating Parametric Human Models with PIFu for Single-view Clothed Human Reconstruction

            Kennard Yanting Chan, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Ranking Game for Imitation Learning
            05:12

            A Ranking Game for Imitation Learning

            Harshit Sikchi, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning to Scaffold: Optimizing Model Explanations for Teaching
            04:59

            Learning to Scaffold: Optimizing Model Explanations for Teaching

            Patrick Fernandes, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Near-Optimal Primal-Dual Method for Off-Policy Learning in CMDP
            04:41

            A Near-Optimal Primal-Dual Method for Off-Policy Learning in CMDP

            Fan Chen, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Theoretical analysis of deep neural networks for temporally dependent observations
            05:16

            Theoretical analysis of deep neural networks for temporally dependent observations

            Mingliang Ma, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen