Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization

            Nov 28, 2022

            Sprecher:innen

            QD

            Qishi Dong

            Sprecher:in · 0 Follower:innen

            AM

            Awais Muhammad

            Sprecher:in · 0 Follower:innen

            FZ

            Fengwei Zhou

            Sprecher:in · 0 Follower:innen

            Über

            Recent advances on large-scale pre-training have shown great potentials of leveraging a large set of Pre-Trained Models (PTMs) for improving Out-of-Distribution (OoD) generalization, for which the goal is to perform well on possible unseen domains after fine-tuning on multiple training domains. However, maximally exploiting a zoo of PTMs is challenging since fine-tuning all possible combinations of PTMs is computationally prohibitive while accurate selection of PTMs requires tackling the possibl…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 952 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Train Offline, Test Online: A Real Robot Learning Benchmark
            05:26

            Train Offline, Test Online: A Real Robot Learning Benchmark

            Gaoyue Zhou, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            An Investigation into Whitening Loss for Self-supervised Learning
            04:37

            An Investigation into Whitening Loss for Self-supervised Learning

            Xi Weng, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Factor Investing with a Deep Multi-Factor Model
            13:18

            Factor Investing with a Deep Multi-Factor Model

            Zikai Wei, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Elucidating the Design Space of Diffusion-Based Generative Models
            05:02

            Elucidating the Design Space of Diffusion-Based Generative Models

            Tero Karras, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 4 = 0.4%

            Matryoshka Representation Lerning
            04:57

            Matryoshka Representation Lerning

            Aditya Kusupati, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Scalable and Efficient Non-adaptive Deterministic Group Testing
            05:08

            Scalable and Efficient Non-adaptive Deterministic Group Testing

            Dariusz R. Kowalski, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen