Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification

            Nov 28, 2022

            Sprecher:innen

            QW

            Qitian Wu

            Sprecher:in · 0 Follower:innen

            WZ

            Wentao Zhao

            Sprecher:in · 0 Follower:innen

            ZL

            Zenan Li

            Sprecher:in · 0 Follower:innen

            Über

            Graph neural networks have been extensively studied for learning with inter-connected data. Despite this, recent evidence has revealed GNNs' deficiencies related to over-squashing, heterophily, handling long-range dependencies, edge incompleteness and particularly, the absence of graphs altogether. While a plausible solution is to learn new topology for message passing, issues concerning quadratic complexity hinder simultaneous guarantees for scalability and precision in large networks. In this…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 960 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Deep Attentive Belief Propagation
            01:00

            Deep Attentive Belief Propagation

            Yanchen Deng, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Stronger is not better: Better Augmentations in Contrastive Learning for Medical Image Segmentation
            14:35

            Stronger is not better: Better Augmentations in Contrastive Learning for Medical Image Segmentation

            Azeez Idris, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Expansion and Shrinkage of Localization for Weakly-Supervised Semantic Segmentation
            04:48

            Expansion and Shrinkage of Localization for Weakly-Supervised Semantic Segmentation

            Jinlong Liu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Asymptotic Properties for Bayesian Neural Network in Besov Space
            04:28

            Asymptotic Properties for Bayesian Neural Network in Besov Space

            Kyeongwon Lee

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            BERT on a Data Diet: Finding Important Examples by Gradient-Based Pruning
            04:36

            BERT on a Data Diet: Finding Important Examples by Gradient-Based Pruning

            Mohsen Fayyaz, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            tntorch: Tensor Network Learning with PyTorch
            03:54

            tntorch: Tensor Network Learning with PyTorch

            Mikhail Usvyatsov, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen