Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Fair Wrapping for Black-box Predictions
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Fair Wrapping for Black-box Predictions
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Fair Wrapping for Black-box Predictions

            Nov 28, 2022

            Sprecher:innen

            AS

            Alexander Soen

            Sprecher:in · 0 Follower:innen

            IA

            Ibrahim Alabdulmohsin

            Sprecher:in · 0 Follower:innen

            SK

            Sanmi Koyejo

            Sprecher:in · 2 Follower:innen

            Über

            We introduce a new family of techniques to post-process (“wrap") a black-box classifier in order to reduce its bias. Our technique builds on the recent analysis of improper loss functions whose optimization can correct any twist in prediction, unfairness being treated as a twist. In the post-processing, we learn a wrapper function which we define as an α-tree, which modifies the prediction. We provide two generic boosting algorithms to learn α-trees. We show that our modification has appealing p…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            3DB: A Framework for Debugging Computer Vision Models
            04:37

            3DB: A Framework for Debugging Computer Vision Models

            Guillaume Leclerc, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation
            03:28

            Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation

            Yang Ni

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Semantic Probabilistic Layers for Neuro-Symbolic Learning
            04:58

            Semantic Probabilistic Layers for Neuro-Symbolic Learning

            Kareem Ahmed, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Single-phase deep learning in cortico-cortical networks
            04:59

            Single-phase deep learning in cortico-cortical networks

            Will Greedy, …

            N2
            N2
            NeurIPS 2022 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            AdvDO: Realistic Adversarial Attacks for Trajectory Prediction
            03:33

            AdvDO: Realistic Adversarial Attacks for Trajectory Prediction

            Yulong Cao, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Continuous Time Framework for Discrete Denoising Models
            04:44

            A Continuous Time Framework for Discrete Denoising Models

            Andrew Campbell, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen