Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Transformers meet Stochastic Block Models: Attention with Data-Adaptive Sparsity and Cost
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Transformers meet Stochastic Block Models: Attention with Data-Adaptive Sparsity and Cost
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Transformers meet Stochastic Block Models: Attention with Data-Adaptive Sparsity and Cost

            Nov 28, 2022

            Sprecher:innen

            SC

            Sungjun Cho

            Řečník · 0 sledujících

            SM

            Seonwoo Min

            Řečník · 0 sledujících

            JK

            Jinwoo Kim

            Řečník · 0 sledujících

            Über

            To overcome the quadratic cost of self-attention, recent works have proposed various sparse attention modules, most of which fall under one of two groups: 1) sparse attention under a hand-crafted patterns and 2) full attention followed by a sparse variant of softmax such as α-entmax. Unfortunately, the first group lacks adaptability to data while the second still requires quadratic cost in training. In this work, we propose SBM-Transformer, a model that resolves both problems by endowing each at…

            Organisator

            N2
            N2

            NeurIPS 2022

            Účet · 962 sledujících

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Opening Remarks
            07:19

            Opening Remarks

            Nathan Ng

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Continuous-time Bayesian Neural Network for Fast Training-free Test-time Adaptation
            05:09

            Continuous-time Bayesian Neural Network for Fast Training-free Test-time Adaptation

            Hengguan Huang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Welcome and Introduction
            04:51

            Welcome and Introduction

            Tom White

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Composite Feature Selection Using Deep Ensembles
            04:56

            Composite Feature Selection Using Deep Ensembles

            Fergus Imrie, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Generalization and Translatability in Emergent Communication via Informational Constraint
            03:06

            Generalization and Translatability in Emergent Communication via Informational Constraint

            Mycal Tucker, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Data-Efficient Augmentation for Training Neural Networks
            04:42

            Data-Efficient Augmentation for Training Neural Networks

            Tian Yu Liu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen