Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Change-point Detection for Sparse and Dense Functional Data in General Dimensions
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Change-point Detection for Sparse and Dense Functional Data in General Dimensions
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Change-point Detection for Sparse and Dense Functional Data in General Dimensions

            Nov 28, 2022

            Sprecher:innen

            CMMP

            Carlos Misael Madrid Padilla

            Sprecher:in · 0 Follower:innen

            DW

            Daren Wang

            Sprecher:in · 0 Follower:innen

            ZZ

            Zifeng Zhao

            Sprecher:in · 0 Follower:innen

            Über

            We study the problem of change-point detection and localisation for functional data sequentially observed on a general d-dimensional space, where we allow the functional curves to be either sparsely or densely sampled. Data of this form naturally arise in a wide range of applications such as biology, neuroscience, climatology and finance. To achieve such a task, we propose a kernel-based algorithm named functional seeded binary segmentation (FSBS). FSBS is computationally efficient, can handle d…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Explaining a Reinforcement Learning Agent via Prototyping
            05:04

            Explaining a Reinforcement Learning Agent via Prototyping

            Ronilo Ragodos, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Unsupervised Representation Learning from Pre-trained Diffusion Probabilistic Models
            04:40

            Unsupervised Representation Learning from Pre-trained Diffusion Probabilistic Models

            Zijian Zhang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE Solvers
            14:04

            PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE Solvers

            Namgyu Kang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            VTC-LFC: Vision Transformer Compression with Low-Frequency Components
            05:14

            VTC-LFC: Vision Transformer Compression with Low-Frequency Components

            Zhenyu Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Toward a realistic model of speech processing in the brain with self-supervised learning
            04:47

            Toward a realistic model of speech processing in the brain with self-supervised learning

            Juliette Millet, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Museformer: Transformer with Fine- and Coarse-Grained Attention for Music Generation
            01:02

            Museformer: Transformer with Fine- and Coarse-Grained Attention for Music Generation

            Botao Yu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen