TREC: Transient Redundancy Elimination-based Convolution

Nov 28, 2022

Speakers

About

The intensive computations in convolutional neural networks (CNNs) pose challenges for resource-constrained devices; eliminating redundant computations from convolution is essential. This paper gives a principled method to detect and avoid transient redundancy, a type of redundancy existing in input data or activation maps and hence changing across inferences. By introducing a new form of convolution (TREC), this new method makes transient redundancy detection and avoidance an inherent part of the CNN architecture, and the determination of the best configurations for redundancy elimination part of CNN backward propagation. We provide a rigorous proof of the robustness and convergence of TREC-equipped CNNs. TREC removes over 96

Organizer

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NeurIPS 2022