Nov 28, 2022
Succinct representation of complex signals using coordinate-based neural representations (CNRs) has seen great progress, and several recent efforts focus on extending them for handling videos. Here, the main challenge is how to (a) alleviate a compute-inefficiency in training CNRs to (b) achieve high-quality video encoding while (c) maintaining the parameter-efficiency. To meet all requirements (a), (b), and (c) simultaneously, we propose neural video representations with learnable positional features (NVP), a novel CNR by introducing "learnable positional features" that effectively amortize a video as latent codes. Specifically, we first present a CNR architecture based on designing 2D latent keyframes to learn the common video contents across each spatio-temporal axis, which dramatically improves all of those three requirements. Then, we propose to utilize existing powerful image and video codecs as a compute-/memory-efficient compression procedure of latent codes. We demonstrate the superiority of NVP on the popular UVG benchmark; compared with prior arts, NVP not only trains 2 times faster (less than 5 minutes) but also exceeds their encoding quality as 34.00→34.43 (measured with the PSNR metric), even using >8 times fewer parameters. We also show intriguing properties of NVP, e.g., video inpainting, video frame interpolation, etc.Succinct representation of complex signals using coordinate-based neural representations (CNRs) has seen great progress, and several recent efforts focus on extending them for handling videos. Here, the main challenge is how to (a) alleviate a compute-inefficiency in training CNRs to (b) achieve high-quality video encoding while (c) maintaining the parameter-efficiency. To meet all requirements (a), (b), and (c) simultaneously, we propose neural video representations with learnable positional f…
Účet · 961 sledujících
Professionelle Aufzeichnung und Livestreaming – weltweit.
Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Albert Gu, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Shiwei Zeng, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Xi Jiang, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Ran Ran, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %