Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Language Conditioned Spatial Relation Reasoning for 3D Object Grounding
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Language Conditioned Spatial Relation Reasoning for 3D Object Grounding
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Language Conditioned Spatial Relation Reasoning for 3D Object Grounding

            Nov 28, 2022

            Sprecher:innen

            SC

            Shizhe Chen

            Sprecher:in · 0 Follower:innen

            PG

            Pierre-Louis Guhur

            Sprecher:in · 0 Follower:innen

            MT

            Makarand Tapaswi

            Sprecher:in · 0 Follower:innen

            Über

            Localizing objects in 3D scenes based on natural language requires understanding and reasoning about spatial relations. In particular, it is often crucial to distinguish similar objects referred by the text, such as "the left most chair" and "a chair next to the window". In this work we propose a language-conditioned transformer model for grounding 3D objects and their spatial relations. To this end, we design a spatial self-attention layer that accounts for relative distances and orientations b…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 962 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Active Learning Through a Covering Lens
            03:54

            Active Learning Through a Covering Lens

            Ofer Yehuda, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Practical Approaches for Private Adaptive Optimization
            30:23

            Practical Approaches for Private Adaptive Optimization

            Virginia Smith

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Characterizing information loss in a chaotic double pendulum with the Information Bottleneck
            12:18

            Characterizing information loss in a chaotic double pendulum with the Information Bottleneck

            Kieran Murphy, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks
            05:04

            Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks

            Steven Adriaensen, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            What You See is What You Get: Principled Deep Learning via Distributional Generalization
            04:46

            What You See is What You Get: Principled Deep Learning via Distributional Generalization

            Bogdan Kulynych, …

            N2
            N2
            NeurIPS 2022 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Training stochastic stabilized supralinear networks by dynamics-neutral growth
            02:58

            Training stochastic stabilized supralinear networks by dynamics-neutral growth

            Wayne W.M. Soo, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen