Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Deep Attentive Belief Propagation: Integrating Reasoning and Learning for Solving Constraint Optimization Problems
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Deep Attentive Belief Propagation: Integrating Reasoning and Learning for Solving Constraint Optimization Problems
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Deep Attentive Belief Propagation: Integrating Reasoning and Learning for Solving Constraint Optimization Problems

            Nov 28, 2022

            Sprecher:innen

            YD

            Yanchen Deng

            Sprecher:in · 0 Follower:innen

            SK

            Shufeng Kong

            Sprecher:in · 0 Follower:innen

            CL

            Caihua Liu

            Sprecher:in · 0 Follower:innen

            Über

            Belief Propagation (BP) is an important message-passing algorithm for various reasoning tasks over graphical models, including solving the Constraint Optimization Problems (COPs). It has been shown that BP can achieve state-of-the-art performance on various benchmarks by mixing old and new messages before sending the new one, i.e., damping. However, existing methods on tuning a static damping factor for BP not only is laborious but also harms their performance. Moreover, existing BP algorithms t…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 956 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Predicting (and discovering?) multiple conformational states
            14:57

            Predicting (and discovering?) multiple conformational states

            Hannah Wayment-Steele, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Pyrocast: S Machine Learning Pipeline for Pyrocumulonimbus (PyroCb) Forecasting
            04:09

            Pyrocast: S Machine Learning Pipeline for Pyrocumulonimbus (PyroCb) Forecasting

            Kenza Tazi, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Assaying Out-Of-Distribution Generalization in Transfer Learning
            04:43

            Assaying Out-Of-Distribution Generalization in Transfer Learning

            Florian Wenzel

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            When Does Re-initialization Work?
            04:51

            When Does Re-initialization Work?

            Sheheryar Zaidi

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Physical Dynamics with Subequivariant Graph Neural Networks
            01:04

            Learning Physical Dynamics with Subequivariant Graph Neural Networks

            Jiaqi Han, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards Video Text Visual Question Answering: Benchmark and Baseline
            05:00

            Towards Video Text Visual Question Answering: Benchmark and Baseline

            Minyi Zhao, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen