Nov 28, 2022
Sprecher:in · 0 Follower:innen
Sprecher:in · 3 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
We consider the problem of minimizing the sum of two convex functions. One of those functions has Lipschitz-continuous gradients, and can be accessed via stochastic oracles, whereas the other is “simple”. We provide a Bregman-type algorithm with accelerated convergence in function values to a ball containing the minimum. The radius of this ball depends on problem-dependent constants, including the variance of the stochastic oracle. We further show that this algorithmic setup naturally leads to a variant of Frank-Wolfe achieving acceleration under parallelization. More precisely, when minimizing a smooth convex function on a bounded domain, we show that one can achieve an ϵ primal-dual gap (in expectation) in Õ(1 /√(ϵ)) iterations, by only accessing gradients of the original function and a linear maximization oracle with O(1 / √(ϵ)) computing units in parallel. We illustrate this fast convergence on synthetic numerical experiments.We consider the problem of minimizing the sum of two convex functions. One of those functions has Lipschitz-continuous gradients, and can be accessed via stochastic oracles, whereas the other is “simple”. We provide a Bregman-type algorithm with accelerated convergence in function values to a ball containing the minimum. The radius of this ball depends on problem-dependent constants, including the variance of the stochastic oracle. We further show that this algorithmic setup naturally leads to a…
Konto · 960 Follower:innen
Professionelle Aufzeichnung und Livestreaming – weltweit.
Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind
Minsu Kim, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Jinli Liao, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ran Liu, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Lean Wang, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%