Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Finding Safe Zones of Markov Decision Processes Policies
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Finding Safe Zones of Markov Decision Processes Policies
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Finding Safe Zones of Markov Decision Processes Policies

            Dez 2, 2022

            Sprecher:innen

            MM

            Michal Moshkovitz

            Sprecher:in · 0 Follower:innen

            LC

            Lee Cohen

            Sprecher:in · 0 Follower:innen

            YM

            Yishay Mansour

            Sprecher:in · 1 Follower:in

            Über

            Given a policy, we define a SafeZone as a subset of states, such that most of the policy's trajectories are confined to this subset. The quality of the SafeZone is parameterized by the number of states and the escape probability, i.e., the probability that a random trajectory will leave the subset.SafeZones are especially interesting when they have a small number of states and low escape probability. We study the complexity of finding optimal SafeZones and show that in general, the problem is co…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 962 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Graph Neural Networks with Adaptive Readouts
            03:51

            Graph Neural Networks with Adaptive Readouts

            David Buterez, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Train Offline, Test Online: A Real Robot Learning Benchmark
            02:55

            Train Offline, Test Online: A Real Robot Learning Benchmark

            Gaoyue Zhou, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time Guarantees
            06:35

            Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time Guarantees

            Siliang Zeng, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards a spatially transferable super resolution model for downscaling Antarctic surface melt
            06:21

            Towards a spatially transferable super resolution model for downscaling Antarctic surface melt

            Zhongyang Hu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            S3-NeRF: Neural Reflectance Field from Shading and Shadow under a Single Viewpoint
            05:01

            S3-NeRF: Neural Reflectance Field from Shading and Shadow under a Single Viewpoint

            Wenqi Yang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Sound and Complete Incorporation wit Latent Variables Given Local Background Knowledge
            02:49

            Sound and Complete Incorporation wit Latent Variables Given Local Background Knowledge

            Tian-Zuo Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen