Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Data-heterogeneity-aware Mixing for Decentralized Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Data-heterogeneity-aware Mixing for Decentralized Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Data-heterogeneity-aware Mixing for Decentralized Learning

            Dez 2, 2022

            Sprecher:innen

            YD

            Yatin Dandi

            Sprecher:in · 0 Follower:innen

            AK

            Anastasiia Koloskova

            Sprecher:in · 0 Follower:innen

            MJ

            Martin Jaggi

            Sprecher:in · 1 Follower:in

            Über

            Decentralized learning provides an effective framework to train machine learning models with data distributed over arbitrary communication graphs. However, most existing approaches towards decentralized learning disregard the interaction between data heterogeneity and graph topology. In this paper, we characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes. We propose a metric that quantifies the ability of a…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 962 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            VISL:Simultaneous Missing Value Imputation and Structure Learning with Groups
            04:44

            VISL:Simultaneous Missing Value Imputation and Structure Learning with Groups

            Pablo Morales-Alvarez, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invariance Learning based on Label Hierarchy
            03:30

            Invariance Learning based on Label Hierarchy

            Shoji Toyota, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Posted Pricing and Dynamic Prior-independent Mechanisms with Value Maximizers
            04:43

            Posted Pricing and Dynamic Prior-independent Mechanisms with Value Maximizers

            Yuan Deng, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Are Defenses for Graph Neural Networks Robust?
            03:45

            Are Defenses for Graph Neural Networks Robust?

            Felix Mujkanovic, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CLEVRER-Humans: Describing Physical and Causal Events the Human Way
            04:40

            CLEVRER-Humans: Describing Physical and Causal Events the Human Way

            Xuelin Yang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            AlignOT: Optimal transport based algorithm for Cryo-EM  density map alignment
            02:03

            AlignOT: Optimal transport based algorithm for Cryo-EM density map alignment

            Aryan Tajmir Riahi, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen